Core--shell microgels as model colloids for rheological studies

نویسنده

  • M. Siebenbürger
چکیده

We review recent work done on the rheology of thermosensitive suspensions. These systems consist of aqueous suspensions of coreshell particIes having asolid polystyrene core and a shell of thermosensitive crosslinked poly(N-isopropylacrylamide) (PNIPA). In cold water the thermosensitive PNIPA-network is swollen leading to a high effective volume fraction of the particles in suspension. Approaching the volume transition at 32 °C the network shrinks by expelling water. Hence, the effective volume fraction can be adjusted by the temperature. We demonstrate that these suspensions are a well-characterized model system for the stlldy ofthe flow behavior ofconcentrated suspensions. Tn particular, experimental work done on this system can be compared to the predictions of the modecoupling theory (MCT) 01' the fluid-to-glass transition. Excellent agreement is found demonstrating that MCT captures the essential features of the dyn amics of flowing suspensions. In particular, MeT predicts a melting of the glass by shear which is fulJy corroborated by the experimental data.

برای دانلود متن کامل این مقاله و بیش از 32 میلیون مقاله دیگر ابتدا ثبت نام کنید

ثبت نام

اگر عضو سایت هستید لطفا وارد حساب کاربری خود شوید

منابع مشابه

Microwave, photo- and thermally responsive PNIPAm-gold nanoparticle microgels.

Microwave-, photo- and thermo-responsive polymer microgels that range in size from 500 to 800 microm and are swollen with water were prepared by a novel microarray technique. We used a liquid-liquid dispersion technique in a system of three immiscible liquids to prepare hybrid PNIPAm- co-AM core-shell capsules loaded with AuNPs. The spontaneous encapsulation is a result of the formation of doub...

متن کامل

Programmable co-assembly of oppositely charged microgels.

Here we report the development of an aqueous, self-assembling system of oppositely charged colloids leading towards particle arrangements with controlled order. The colloidal system consists of two types of particles, each consisting of refractive index matched colloidal core-shell microgel particles, which are either negatively charged or amphoteric. By slowly decreasing the pH of our system b...

متن کامل

Dually Fluorescent Core-Shell Microgels for Ratiometric Imaging in Live Antigen-Presenting Cells

Core-shell microgels containing sensors/dyes in a matrix were fabricated by two-stage free radical precipitation polymerization method for ratiometric sensing/imaging. The microgels composing of poly(N-isopropylacrylamide) (PNIPAm) shell exhibits a low critical solution temperature (LCST), underwent an entropically driven transition from a swollen state to a deswollen state, which exhibit a hyd...

متن کامل

Fe3O4@Polydopamine Core-Shell Nanocomposite as a Sorbent for Efficient Removal of Rhodamine B from Aqueous Solutions: Kinetic and Equilibrium Studies

In this work, a Fe3O4@polydopamine core-shell nanocomposite (Fe3O4/PDA) was synthesized through an in situ self-polymerization methods and was applied as a sorbent for Rhodamine B (RhB) removal. The synthetic procedure is simple and involves no organic solvents. The as-prepared Fe3O4/PDAnanocomposite was characterized by tran...

متن کامل

Thermoresponsive core-shell microgels with silica nanoparticle cores: size, structure, and volume phase transition of the polymer shell.

Core-shell microgels made of the thermoresponsive polymer poly(N-isopropylacrylamide) (PNIPAM) and silica nanoparticles as inorganic cores were investigated by dynamic light scattering (DLS) and small angle neutron scattering (SANS). In order to study the response of the particles upon changes of temperature, experiments were done in a temperature interval close to the volume phase transition t...

متن کامل

ذخیره در منابع من


  با ذخیره ی این منبع در منابع من، دسترسی به آن را برای استفاده های بعدی آسان تر کنید

برای دانلود متن کامل این مقاله و بیش از 32 میلیون مقاله دیگر ابتدا ثبت نام کنید

ثبت نام

اگر عضو سایت هستید لطفا وارد حساب کاربری خود شوید

عنوان ژورنال:

دوره   شماره 

صفحات  -

تاریخ انتشار 2012